Skip to main content

دليل المواد | الشئون الأكاديمية

EE
520

Course Number:
0610520
Finite differences representations of Maxwell's equations, Numerical dispersion and numerical stability, Source implementations, Absorbing boundary conditions, High-order schemes and other recent advances in FDTD, Practical applications.
(3-0-3)

EE
521

Course Number:
0610521
Scattering parameters representation of microwave circuits, directional couplers, microwave junctions, attenuators, phase shifters, circulators, filters, microstrip lines. Techniques of microwave measurements.
(3-0-3)

EE
522

Course Number:
0610522
The far-field integrals, resiprocity, directivity. Radiation patterns of dipoles and loops. Radiation patterns of horn and slot antennas. Linear arrays: analysis and synthesis. Self impedance and mutual impedance of dipoles. The design of feeding structures for antenna elements. Reflectors and lenses.
(3-0-3)

EE
523

Course Number:
0610523
Waveguides with metallic boundaries, Mode orthogonality, Modal expansion Excitation by simple sources. Constant impedance wall waveguides. The corrugated waveguide as a low crosspolar radiator. Waveguides with imperfect walls: The earth Ionosphere guide and the Tunnel Guide as examples of natural waveguides. Dielectric waveguides: i) The Optical Fiber Guide, ii) Millimeter waveguides. The Microstrip line and the Coplanar Waveguide: Characteristics of single and coupled lines. Numerical methods for waveguide analysis.
(3-0-3)

EE
524

Course Number:
0610524
Networking overview, Protocols, Multimedia issues, Packet switching networks, Intelligent Networks, Ad-hoc and Sensor Networks, Mobile Networking, and current trends in high speed networking.
(3-0-3)
Prerequisites:
EE508 or Permission of Instructor

EE
525

Course Number:
0610525
Basics of lossless compression techniques, Universal coding schemes, Dictionary based LZ algorithms, Arithmetic coding, Lossless image compression, G3/G4 facsimile coding, JBIG standard, Scalar and Vector quantization. Lossy image and audio compression, Predictive coding, Transform coding, Subband coding, Multimedia compression standards, JPEG2000, H.263 and variants, MPEG-1,2 and 4.
(3-0-3)
Prerequisites:
0600-508 or Permission of Instructor

EE
526

Course Number:
0610526
Introduction and Fundementals, Medium Access Control Protocols, Cellular Networks, Wireless Internet, 4G Systems, and Pervasive Networking.
(3-0-3)
Prerequisites:
0600-508 or Permission of Instructor

EE
527

Course Number:
0610527
Introduction to networks and information theory, Cryptography, Network secrity modeling, IP security, E-business security, Network management security, System security, Firewalls, and Current trends in network security.
(3-0-3)
Prerequisites:
0600-508 or Permission of Instructor

EE
528

Course Number:
0610528
Introduction to wireless communication principles, the cellular concept-system design issues, signal propogation and link budgets for wireless links, communication over fading channels, modulation, multiplexing, and multiple access techniquese, channel coding for wireless systems, equalization and diversity, wireless communication networks and standards.
(3-0-3)
Prerequisites:
0600-508 or Permission of Instructor

EE
530

Course Number:
0610530
Crystallographic properties of semiconductors, physical models of the atom including the Quantum model, atomic structure and periodic table, Energy bands, charge carriers and excess carriers in semiconductors, Fermi-Dirac statistics, Basic semiconductor equations, Optical absorption, Quantitative theory of semiconductor devices: 1.PN Junction diodes, 2. Bipolar Junction Transistors, 3. MOS transistors, including steady state and transient analysis, high frequency properties, charge control model, Special devices such as photo-diodes, Schottky diodes, CCDs, etc..
(3-0-3)

EE
531

Course Number:
0610531
Varactor diodes, parametric amplifiers, pindiodes, transferred electron devices. Transit time devices, IMPATTS, BARITTS, travelling wave tubes, klystrons, magnetrons, MESFET, harmonic multipliers.
(3-0-3)
Prerequisites:
610-530

EE
532

Course Number:
0610532
Models for Integrated-circuit active devices. Basic Integrated circuit building blocks. Bipolar MOS and BICMOS operational amplifiers. Design and Analysis. Frequency response of Integrated circuits. Nonlinear analog circuits. Noise in integrated circuits.
(3-0-3)
Prerequisites:
610-432

EE
537

Course Number:
0610537
Design and implementation of CMOS digital circuits including: The inverter (complexity, static, dynamic, power, delay, scaling effects). Combinational logic gates and arithmetic building blocks (static, dynamic, cascading, power, choice of logic family). Sequential logic circuits and memories (static, dynamic, non-bistable), RAM's ROM's. PLASs, Introduction to stick diagrams, to symbolic layout rules and to use layout editors. a silicon CMOS design project leading to a complete layout of a digital block designed and simulated using HSPICE is an integral part of the course.
(3-0-3)

EE
538

Course Number:
0610538
Mixed analog and digital simulation techniques. Symbolic layout and compaction techniques. Simulated annealing Verification methods. Logic and high level synthesis. Managing design complexity.
(3-0-3)

EE
541

Course Number:
0610541
Applications of dynamic network theory to electromechanical energy conversion problems. Linear transformations; power invariant transformations, the generalized rotating machine; dynamic and steady-state response of machines.
(3-0-3)
Prerequisites:
610-551